Multiple dynamical modes of thalamic relay neurons: rhythmic bursting and intermittent phase-locking.

نویسنده

  • X J Wang
چکیده

A model of thalamocortical relay neuron is studied to assess whether a 7-14 Hz (spindle) oscillation and a 0.5-4 Hz (delta) oscillation may result from the interplay between a T-type calcium current and a non-specific cation sag current. With moderate change of membrane parameter values, the model neuron can exhibit both the spindle and delta rhythms, at different levels of hyperpolarization; only the slower (delta) one or none. In the case when the model neuron is not intrinsically oscillatory, its response to rhythmic hyperpolarization is complex, and displays the "intermittent phase-locking" phenomenon where bursts of Na+ action potentials occur infrequently but their occurrence is phase-locked to the rhythmic input. The rhythmic bursting, whenever possible, is shown to emerge (bifurcate) from a subthreshold oscillation. Near the bifurcation chaotic discharge patterns are observed, where spikes occur intermittently at randomly chosen cycles of a mostly subthreshold slow oscillation. Furthermore, when both the spindle and delta modes can be realized, the transition between the two appears as a sudden drop of the rhythmic frequency with increased hyperpolarization. The T-type calcium current and the sag current may explain the "intermittent phase-locking" phenomenon that is characteristic to thalamic relay neurons during spindle oscillation and provide a cellular basis for the 7-14 Hz rhythm and the slower 0.5-4 Hz rhythm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O23: Modulation of Pacemaker Channels and Rhythmic Thalamic Activity by Demyelination and Inflammatory Cytokines

The thalamus is a central element for the generation of rhythmic oscillatory activity under physiological and pathophysiological conditions. Especially slow oscillations in the delta and theta frequency band which normally occur during slow-wave sleep are associated with a number of neuropsychiatric conditions if they occur during wakefulness and may be the basis for the generation of character...

متن کامل

Burst and tonic firing in thalamic cells of unanesthetized, behaving monkeys.

Thalamic relay cells fire in two distinct modes, burst or tonic, and the operative mode is dictated by the inactivation state of low-threshold, voltage-gated, transient (or T-type) Ca2+ channels. Tonic firing is seen when the T channels are inactivated via membrane depolarization, and burst firing is seen when the T channels are activated from a hyperpolarized state. These response modes have v...

متن کامل

The effect of feedback inhibition on throughput properties of the dorsal lateral geniculate nucleus

The effect of feedback inhibition from thalamic reticular cells on retinogeniculate transmission by thalamocortical neurons of the dorsal lateral geniculate nucleus is analyzed using a minimal integrate-and-fire-or-burst network model. Potassium leakage conductances control the neuromodulatory state of the network and eliminate rhythmic bursting in the presence of spontaneous input. During osci...

متن کامل

Interactive Responses of a Thalamic Neuron to Formalin Induced Lasting Pain in Behaving Mice

Thalamocortical (TC) neurons are known to relay incoming sensory information to the cortex via firing in tonic or burst mode. However, it is still unclear how respective firing modes of a single thalamic relay neuron contribute to pain perception under consciousness. Some studies report that bursting could increase pain in hyperalgesic conditions while others suggest the contrary. However, sinc...

متن کامل

Burst and tonic response modes in thalamic neurons during sleep and wakefulness.

Thalamic neurons can exhibit two distinct firing modes: tonic and burst. In the lateral geniculate nucleus (LGN), the tonic mode appears as a relatively faithful relay of visual information from retina to cortex. The function of the burst mode is less understood. Its prevalence during slow-wave sleep (SWS) and linkage to synchronous cortical electroencephalogram (EEG) suggest that it has an imp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroscience

دوره 59 1  شماره 

صفحات  -

تاریخ انتشار 1994